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Abstract
We study the integrable hierarchy underlying topological Landau–Ginzburg
models of D-type proposed by Takasaki. Since this integrable hierarchy
contains the dBKP hierarchy as a sub-hierarchy, we refer it to the extended
dBKP (EdBKP) hierarchy. We give a dressing formulation to the EdBKP
hierarchy and investigate additional symmetries associated with the solution
space of the hierarchy. We obtain hodograph solutions of its finite-dimensional
reductions via Riemann–Hilbert problem (twistor construction) and derive
Bäcklund transformations of the (2 + 1)-dimensional dBKP equation from
additional flows. Finally, the modified partner of the dBKP hierarchy is also
established through a Miura transformation.

PACS number: 02.30.Ik

1. Introduction

Dispersionless KP(dKP) hierarchy has been one of prototype systems in dispersionless
integrable hierarchies, which plays an important role in theoretical and mathematical physics
(see, e.g., [1, 3, 10–13, 15, 16, 24, 26] and references therein). A variant system of the
dKP, the so-called dBKP hierarchy [21], is still at the early stage for studying integrability.
The dBKP hierarchy can be considered as the dispersionless limit (or quasi-classical limit)
of the BKP hierarchy (the KP of B-type) [9] which is a kind of reduction of the KP
hierarchy. Such a reduction however is quite different from that for the KdV hierarchy.
In the past few years, some progresses have been made for the dBKP hierarchy such as
hodograph transformations [8], w-infinity symmetries [21] and ∂̄-dressing method [6, 14].
In [22], Takasaki proposed an integrable hierarchy to study topological Landau–Ginzburg
models of D-type. This new integrable hierarchy resembling to the dispersionless Toda
(dToda) hierarchy [23, 25, 26] has two sets of time variables. Motivated by the Riemann–
Hilbert approach to the dToda hierarchy [23, 26], we show that this new hierarchy enables
us to investigate several properties associated with the dBKP hierarchy including dressing
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formulation, finite-dimensional reductions, hodograph solutions, additional symmetries and
Bäcklund transformations. Our results not only give a supplement to the previous studies but
also provide a more complete picture of the dBKP hierarchy.

Let us briefly recall the BKP hierarchy and its quasi-classical limit. The BKP hierarchy
is defined by the Lax equations [9]

∂2n+1L = [B2n+1, L], B2n+1 = (L2n+1)+ (1.1)

with constraint

L∗ = −∂L∂−1 (1.2)

where the Lax operator has the form

L = ∂ + u2∂
−1 + u3∂

−2 + · · · ,
with coefficient functions ui depending on the time variables t = (t1, t3, . . .) and

(∑
i ai∂

i
)

+ =∑
i�0 ai∂

i . It can be shown [9] that the constraint (1.2) is equivalent to the condition
(B2n+1)[0] = 0 with

(∑
i ai∂

i
)

[j ] = aj . The Lax equation (1.1) can be described by the
compatibility condition of the linear system

Lψ = λψ, ∂2n+1ψ = B2n+1ψ. (1.3)

Let us take the dispersionless limit to the BKP. Under the change of variables t → t/ε and
assuming that ui(t/ε) = ui(t) + O(ε) and ψ = exp(S/ε), the linear system (1.3) in the limit
ε → 0 gives λ = k +

∑∞
j=1 ui+1k

−i and the phase function S satisfies

∂2n+1S = B2n+1 (1.4)

where k = Sx andB2n+1 = (λ2n+1)�0. From now on, the projections are with respect to Laurent
series of k as

(∑
i aik

i
)
�l

= ∑
i�l aik

i ,
(∑

i aik
i
)
<l

= ∑
i<l aik

i and
(∑

i aik
i
)

[l] = al . To
incorporate the dispersionless limit of the constrained equation (1.2), we apply both sides
of L = −∂−1L∗∂ on ψ = exp(S/ε). Then the left-hand side in the limit ε → 0 gives
λ = k +

∑∞
i=1 ui+1k

−i , while for the right-hand side λ = k +
∑∞

i=1(−1)i+1ui+1k
−i . This means

that λ(t,−k) = −λ(t, k) or

λ = k +
∑
i=1

u2ik
−2i+1 = k + u2k

−1 + u4k
−3 + · · · .

Note that λ(t, k) is an odd function in k, hence B2n+1(t,−k) = −B2n+1(t, k) or B2n+1(t, k) =
k2n+1 +

∑n
j=1 bn,2j−1(t)k

2j−1. Differentiating equation (1.4) over x we have ∂2n+1k = ∂xB2n+1

which, after expressing in λ, is nothing but the Lax equation of the dBKP hierarchy [21]

∂2n+1λ = {B2n+1, λ} (1.5)

where the Poisson bracket is defined by

{f, g} = ∂f

∂k

∂g

∂x
− ∂f

∂x

∂g

∂k
. (1.6)

The simplest nontrivial flow in the dBKP hierarchy is the (2 + 1)-dimensional dBKP
equation [8]:

3ut + 15u2ux − 5uuy − 5ux∂
−1
x uy − 5

3∂−1
x uyy = 0, (1.7)

where t1 = x, t3 = y, t5 = t and u ≡ u2.
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2. Dressing formulation

Takasaki [22] proposed an integrable hierarchy underlying topological Landau–Ginzburg
models of D-type as

∂L
∂t2n+1

= {B2n+1,L}, ∂L
∂t̂2n+1

= {B̂2n+1,L}
∂L̂

∂t2n+1
= {B2n+1, L̂}, ∂L̂

∂t̂2n+1
= {B̂2n+1, L̂}, n = 0, 1, 2, . . .

(2.1)

with

L = k +
∞∑

n=1

u2nk
−2n+1, L̂ =

∞∑
n=0

û2nk
2n+1, û0 �= 0

and

B2n+1 = (L2n+1)�0, B̂2n+1 = (L̂−2n−1)�−1,

where the coefficient functions u2n and û2n depend on the time variables t = (t1, t3, . . .) and
t̂ = (t̂1, t̂3, . . .) and the Poisson bracket { , } here is defined by (1.6). Since L(−k) = −L(k)

and L̂(−k) = −L̂(k), we have (B2n+1)[0] = (B̂2n+1)[0] = 0. The Lax equations (2.1) are
equivalent to the zero curvature equations

∂B2m+1

∂t2n+1
− ∂B2n+1

∂t2m+1
+ {B2m+1,B2n+1} = 0,

∂B̂2m+1

∂t̂2n+1
− ∂B̂2n+1

∂t̂2m+1
+ {B̂2m+1, B̂2n+1} = 0, (2.2)

∂B2m+1

∂t̂2n+1
− ∂B̂2n+1

∂t2m+1
+ {B2m+1, B̂2n+1} = 0,

which guarantees that the Lax equations (2.1) commute between themselves. Since the first
equation of (2.1) (or (2.2)) involving t2n+1-flows only is just the dBKP hierarchy (1.5), thus
(2.1) (or (2.2)) is an integrable extension of the dBKP hierarchy by introducing an extra set of
time variables t̂2n+1. We refer (2.1) (or (2.2)) to the extended dBKP (EdBKP) hierarchy.

Next, we like to show that the Lax operators of the EdBKP hierarchy have a dressing
formulation, similar to that of the dToda case [26], as

L = eadϕ(t,t̂ ,k)(k), L̂ = eadϕ̂(t,t̂ ,k)(k)

where ad X(Y ) ≡ {X, Y } and the dressing functions ϕ(t, t̂ , k) and ϕ̂(t, t̂ , k) are defined by

ϕ(t, t̂ , k) =
∞∑

n=1

ϕ2n(t, t̂)k
−2n+1, ϕ̂(t, t̂ , k) =

∞∑
n=1

ϕ̂2n(t, t̂)k
2n−1.

Then the Lax equations (2.1) imply that

∇t2n+1,ϕϕ = −(L2n+1)�−1, ∇t̂2n+1,ϕϕ = (L̂−2n−1)�−1

∇t2n+1,ϕ̂ ϕ̂ = (L2n+1)�1, ∇t̂2n+1,ϕ̂ ϕ̂ = −(L̂−2n−1)�1

(2.3)

where ∇tn,XY = ∑∞
k=0(ad X)k∂tnY/(k + 1)!.
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In order to discuss Riemann–Hilbert problem, let us introduce the Orlov–Schulman
operators [20] through the dressing operator approach as

M = eadϕ(t,t̂ ,k)

( ∞∑
n=1

(2n + 1)t2n+1k
2n + x

)
=

∞∑
n=0

(2n + 1)t2n+1L2n +
∑
n=0

v2n+2L−2n−2,

M̂ = eadϕ̂(t,t̂ ,k)

(
−

∞∑
n=0

(2n + 1)t̂2n+1k
−2n−2 + x

)
= −

∞∑
n=0

(2n + 1)t̂2n+1L̂−2n−2 +
∑
n=0

v̂2n+2L̂2n

which, by (2.3), satisfy the Lax equations

∂M
∂t2n+1

= {B2n+1,M}, ∂M
∂t̂2n+1

= {B̂2n+1,M}
∂M̂
∂t2n+1

= {B2n+1,M̂}, ∂M̂
∂t̂2n+1

= {B̂2n+1,M̂}, n = 0, 1, 2, . . .

(2.4)

and the canonical Poisson relation

{L,M} = {L̂,M̂} = 1. (2.5)

Note that M and M̂ are even functions in k, i.e. M(−k) = M(k) and M̂(−k) = M̂(k). The
integrability of the hierarchy can be viewed from the canonical conjugate pair (L,M) and
(L̂,M̂) which provides the Darboux coordinates of the 2-form ω = ∑∞

n=0 dB2n+1 ∧ dt2n+1 +∑∞
n=0 dB̂2n+1 ∧ dt̂2n+1 (with dω = 0 and ω ∧ ω = 0) so that

ω = dL ∧ dM = dL̂ ∧ dM̂
imples (2.1), (2.4) and (2.5). It can be shown [26] that there exists a single function F(t, t̂)

called free energy such that the coefficients v2n+2(v̂2n+2) in M(M̂) and those f2n(f̂ 2n) in the
inverse function k(L, t, t̂ )(k(L̂, t, t̂ )),

k(L) = L −
∑
n=1

f2nL−2n+1 =
∑
n=0

f̂ 2nL̂2n+1,

can be expressed in terms of second derivatives of the free energy as

f2n = 1

2n − 1

∂2F
∂x∂t2n−1

, v2n+2 = ∂F
∂t2n+1

,

f̂ 2n = − 1

2n + 1

∂2F
∂x∂t̂2n+1

, v̂2n+2 = − ∂F
∂t̂2n+1

,

where n � 1 and u = f2 = ∂2F/∂x2.

3. Additional symmetries

The solution space of the EdBKP hierarchy can be characterized by a Riemann–Hilbert
problem (or twistor construction) [22]. Let f (k, x), g(k, x), f̂ (k, x) and ĝ(k, x) be functions
with definite parity

f (−k, x) = −f (k, x), g(−k, x) = g(k, x),

f̂ (−k, x) = −f̂ (k, x), ĝ(−k, x) = ĝ(k, x),

and satisfy the Poisson relations

{f, g} = {f̂ , ĝ} = 1. (3.1)

Then, the functional relations

f (L,M) = f̂ (L̂,M̂), g(L,M) = ĝ(L̂,M̂)
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imply the Lax equations and the canonical relation for (L,M, L̂,M̂). We call (f, g, f̂ , ĝ)

the twistor data of the system. We remark that, similar to the dToda case [26], the dressing
approach not only provides a convenient way to introduce the Orlov–Schulman operator but
also enables us to prove the existence of the twistor data. The twistor data of the Riemann–
Hilbert problem are by no means unique, instead there are infinitely many choices of them.
They are connected to each other via canonical transformations. This brings out the notion of
additional symmetries in the solution space. Let F(k, x), F̂ (k, x) be generating functions of
the canonical transformation

(f (k, x), g(k, x)) → (fε(k, x), gε(k, x)) = e−εadF (f, g),

(f̂ (k, x), ĝ(k, x)) → (f̂ ε(k, x), ĝε(k, x)) = e−εadF̂ (f̂ , ĝ)
(3.2)

where ε is an infinitesimal parameter and

ad F = ∂F

∂k

∂

∂x
− ∂F

∂x

∂

∂k
, ad F̂ = ∂F̂

∂k

∂

∂x
− ∂F̂

∂x

∂

∂k
.

Denoting

Kε = K + εδF,F̂K + O(ε2),

where K = (L,M, L̂,M̂, ϕ, ϕ̂) and the derivative δF,F̂ has no effect on the time variables:
δF,F̂ t2n+1 = δF,F̂ t̂2n+1 = 0. Due to the parity of (f, g, f̂ , ĝ), we have

F(−k, x) = −F(k, x), F̂ (−k, x) = −F̂ (k, x),

and hence

F(k, x) =
∑
ij

cij k
2i+1xj , F̂ (k, x) =

∑
ij

ĉij k
2i+1xj .

From (3.1) and (3.2) one can show that

∇δF,F̂ ϕϕ = [F(L,M) − F̂ (L̂,M̂)]�−1,

∇δF,F̂ ϕ̂ ϕ̂ = [F̂ (L̂,M̂) − F(L,M)]�1,

where ∇δF,F̂ XY is defined as before by replacing ∂/∂tn by δF,F̂ . Thus, from the dressing
formulation the associated infinitesimal symmetries of (L, L̂,M,M̂) are given by

δF,F̂L = {(F (L,M) − F̂ (L̂,M̂))�−1,L}, δF,F̂M = {(F (L,M) − F̂ (L̂,M̂))�−1,M},
δF,F̂ L̂ = {(F̂ (L̂,M̂) − F(L,M))�1, L̂}, δF,F̂M̂ = {(F̂ (L̂,M̂) − F(L,M))�1,M̂}.

(3.3)

From (2.1), (2.4) and (2.5), it is easy to show that the additional flows commute with the
Lax flows [δF,F̂ , ∂t2n+1 ] = [δF,F̂ , ∂t̂2n+1

] = 0. However, in general, the additional flows do not
commute between themselves. Given two pairs of generating functions (F, F̂ ) and (G, Ĝ),
one can show that the infinitesimal symmetries δF,F̂ and δG,Ĝ obey the commutation relations

[δF,F̂ , δG,Ĝ]K = δ{F,G},{F̂ ,Ĝ}K. (3.4)

In fact, the commutation relation (3.4) can be decomposed into the following ones:

[δF,0, δG,0]K = δ{F,G},0K,

[δ0,F̂ , δ0,Ĝ]K = δ0,{F̂ ,Ĝ}K,

[δF,0, δ0,Ĝ]K = 0
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which is isomorphic to a direct sum of w∞-algebra and can be realized as infinite-dimensional
Lie algebra of Poisson brackets on a two-dimensional phase space parameterized by (k, x)

[2]. If one extends the infinitesimal symmetries to the free energy F , then

δF,F̂F = −res[Fx(L,M)dkL] + res[F̂ x(L̂,M̂)dkL̂]

where

Fx(k, x) =
∫ x

0
F(k, y) dy, F̂ x(k, x) =

∫ x

0
F̂ (k, y) dy.

Particularly, the commutation relations for δF,F̂ on F receive a central extension term as

[δF,F̂ , δG,Ĝ]F = δ{F,G},{F̂ ,Ĝ}F + c(F,G) + ĉ(F̂ , Ĝ),

which can be decomposed into a direct sum of w1+∞-algebra:

[δF,0, δG,0]F = δ{F,G},0F + c(F,G),

[δ0,F̂ , δ0,Ĝ]F = δ0,{F̂ ,Ĝ}F + ĉ(F̂ , Ĝ),

[δF,0, δ0,Ĝ]F = 0

where c and ĉ are cocycles of the w1+∞-algebra defined by

c(F,G) = −res[G(k, 0)dkF (k, 0)], ĉ(F̂ , Ĝ) = res[Ĝ(k, 0)dkF̂ (k, 0)]

4. Finite-dimensional reductions

In this section, we will discuss finite-dimensional reductions of the EdBKP hierarchy. Let us
consider the following twistor data (f, g, f̂ , ĝ):

f (k, x) = km, g(k, x) = xk1−m

m
+ h(k),

f̂ (k, x) = km−2N, ĝ(k, x) = xk2N−m+1

m − 2N
+ ĥ(k), m ∈ odd

which satisfy the canonical commutation relation (3.1), and the deformations h(k) and ĥ(k)

are arbitrary even functions of k. The condition f (L,M) = f̂ (L̂,M̂) gives an N reduction
of the EdBKP hierarchy defined by the Lax operator

L = Lm = L̂m−2N

= km + mu2k
m−2 +

(
mu4 +

m(m − 1)

2
u2

2

)
km−4 + · · · + u2Nkm−2N, u2N = ûm−2N

0

which obeys the Lax equations

∂t2n+1L = {(L2n+1)�0, L}, ∂t̂2n+1
L = {(L̂−2n−1)�−1, L}, n = 0, 1, 2, . . . .

On the other hand, from the condition g(L,M) = ĝ(L̂,M̂), the projection ( )�2N−m implies

N−1∑
j=0

2j + 1

m
t2j+1L2j−m+1 +

∞∑
j=N

2j + 1

m
t2j+1L2j−m+1

�2N−m +
∑
j=0

v2j+2

m
L−2j−m−1 + h(L)�2N−m

= −
∞∑

j=0

2j + 1

m − 2N
t̂2j+1L̂2N−2j−m−1

�2N−m + ĥ(L̂)�2N−m.
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Using res(LndL) = δn,−1, we obtain the hodograph equations

t0
2n+1(uj ) = t2n+1 +

∞∑
j=0

µ
(2n+1)
2j+1 (uj )t2N+2j+1 +

∞∑
j=0

µ̂
(2n+1)
2j+1 (uj )t̂2j+1, 0 � n � N − 1,

(4.1)

where the characteristic speeds µ
(2n+1)
2j+1 (uj ), µ̂

(2n+1)
2j+1 (uj ) and the initial positions t0

2n+1(uj ) are
defined by

µ
(2n+1)
2j+1 (uj ) = 2N + 2j + 1

2n + 1
res

(
Lm−2n−2L2N+2j−m+1

�2N−m dkL
)
, (4.2)

µ̂
(2n+1)
2j+1 (uj ) = m(2j + 1)

(m − 2N)(2n + 1)
res

(
Lm−2n−2L̂2N−2j−m−1

�2N−m dkL
)
, (4.3)

t0
2n+1(uj ) = − m

2n + 1
res

(
Lm−2n−2(h(L) − ĥ(L̂))�2N−mdkL

)
. (4.4)

To solve the associated hodograph solutions, we consider a class of initial positions. Since
t0
2n+1(uj ) are determined by the deformation functions (h, ĥ) and thus the ambiguity of t0

2n+1
comes from the choice of (h, ĥ). Let h(k) (ĥ(k)) be an arbitrary even function in k with Laurent
series of the form h(k) = ∑

i h2ik
2i

(
ĥ(k) = ∑

i ĥ2ik
2i
)

where h2i (ĥ2i ) are constants. Then,

t0
2n+1(uj ) defined in (4.4) now can be expressed in terms of hi, ĥi and µ

(2n+1)
2j+1 (uj ), µ̂

(2n+1)
2j+1 (uj )

as

t0
2n+1(uj ) = −C2n+1 −

∑
j�0

C2N+2j+1µ
(2n+1)
2j+1 −

∑
j�0

Ĉ2j+1µ̂
(2n+1)
2j+1 , 0 � n � N − 1

where Cl = mhl−m/l and Ĉl = (2N − m)ĥ2N−m−l/ l. This immediately implies that the
coefficients of the deformation h (ĥ) can be absorbed into time variables as a shift t2n+1 →
t2n+1 + C2n+1 (t̂2n+1 → t̂2n+1 + Ĉ2n+1) so that hodograph solutions uj (x, t, t̂;h, ĥ) constructed
from deformed cases can be related to those undeformed solutions uj (x, t, t̂;h = ĥ = 0) by
shifting the time variables

uj (x, tn, t̂n;h, ĥ) = uj (x, t2n+1 + C2n+1, t̂2n+1 + Ĉ2n+1;h = ĥ = 0).

However, if h(k) and ĥ(k) are chosen to be odd functions, then it is clear that t0
2n+1 in (4.4)

vanishes. Let us illustrate hodograph solutions for N = 1 and N = 2 reductions.

4.1. N = 1 reductions

In this case,

L = Lm = L̂m−2 = km + mukm−2, m ∈ odd, (4.5)

which provide one-variable reductions of the EdBKP system defined by the Lax equations

∂t2n+1L = {(L 2n+1
m )�0, L}, ∂t̂2n+1

L = {(L− 2n+1
m−2 )�−1, L}, n = 0, 1, 2, . . . ,

or

∂t2n+1u = unux

n!

n∏
l=0

(2n + 1 − lm),

∂t̂2n+1
u = −m(mu)

mn+m−1
2−m ux

(2 − m)n+1n!

n∏
l=0

(2n + 1 − l(2 − m)).
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The solution of the reduced system can be obtained from the hodograph equation (4.1)

t0
1 (u) = t1 +

∞∑
j=0

µ
(1)
2j+1(u)t2j+3 +

∞∑
j=0

µ̂
(1)
2j+1(u)t̂2j+1, (4.6)

where t0
1 (u) is an arbitrary function of u and by (4.2), (4.3) we have

µ
(1)
2j+1(u) = (2j + 3)L2j−m+3

[1−m] = uj+1

(j + 1)!

j+1∏
l=0

(2j + 3 − lm), j � 0,

µ̂
(1)
2j+1(u) = m(2j + 1)

m − 2
L̂1−2j−m

[1−m] = − m(mu)
mj+m−1

2−m

(2 − m)j+1j !

j∏
l=0

(2j + 1 − l(2 − m)).

Example 1. N = 1,m = 1.
In this case, the Lax operator (4.5) has the form

L = L̂−1 = k + uk−1,

which satisfies the Lax equation

∂2n+1L = {(L2n+1)�0,L}, ∂̂2n+1L = {(L̂−2n−1)�−1,L}, n = 0, 1, 2, . . . .

Since L̂−1 = L, the coefficient function u depends on t2n+1 and t̂2n+1 only through the linear
combinations t2n+1 − t̂2n+1. The first three nontrivial equations of them are shown as follows:

∂t3u = 6uux, ∂t5u = 30u2ux, ∂t7u = 140u3ux, (4.7)

∂t̂1u = −ux, ∂t̂3u = −6uux, ∂t̂5u = −30u2ux. (4.8)

We remark that a solution of the first two equations of (4.7), i.e., t3- and t5-flows, also satisfies
the dBKP equation (1.7). To find (2 + 1)-dimensional solutions of (4.7), we set t̂2n+1 = 0 and
expand the hodograph equation (4.6) up to t5 = t :

t0
1 (u) = x + µ

(1)
1 y + µ

(1)
3 t = x + 6uy + 30u2t. (4.9)

Choosing, for example, t0
1 (u) = u and t0

1 (u) = u2 (corresponding to µ
(1)
1 and µ

(1)
3 ,

respectively) into the hodograph equation (4.9), then we have

u(x, y, t) = 1

60t
(−6y + 1 ±

√
(6y − 1)2 − 120xt), t0

1 (u) = u,

u(x, y, t) = 1

30t − 1
(−3y ±

√
9y2 − (30t − 1)x), t0

1 (u) = u2.

Furthermore, the (2+1)-dimensional solutions include (x, y, t̂1) in (4.7) and (4.8) can be given
by expand the hodograph equation (4.6) up to t3 = y and t̂1:

t0
1 (u) = x + µ

(1)
1 y + µ̂

(1)
1 t̂1 = x + 6uy − t̂1. (4.10)

Choosing, t0
1 (u) = u and t0

1 (u) = u2 (corresponding to µ̂
(1)
3 and µ̂

(1)

5 , respectively) into (4.10),
we get

u(x, y, t̂1) = − x − t̂1

6y − 1
, t0

1 (u) = u,

u(x, y, t̂1) = 3y ±
√

9y2 + x − t̂1, t0
1 (u) = u2.
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4.2. N = 2 reductions

In this case,

L = Lm = L̂m−4 = km + mukm−2 + wkm−4, m ∈ odd, (4.11)

which describes a class of two-variable Lax reductions of the EdBKP system and satisfies the
Lax equations

∂t2n+1L = {(
L

2n+1
m

)
�0, L

}
, ∂t̂2n+1

L = {(
L− 2n+1

m−4
)
�−1, L

}
, n = 0, 1, 2, . . . ,

or

∂u

∂t2n+1
=

n+1∑
j=0

( 2n+1
m

j

)(
j

n − j + 1

)
((mu)2j−n−1wn−j+1)x

∂w

∂t2n+1
=

n∑
j=0

( 2n+1
m

j

)(
j

n − j

)
((mu)2j−nwn−jwx + (4 − m)((mu)2j−nwn−j )xw),

∂u

∂t̂2n+1
= −

n∑
j=0

( 2n+1
4−m

j

)(
j

n − j

)
((mu)2j−nw

2n+1
4−m

−j )x,

∂w

∂t̂2n+1
= −

n+1∑
j=0

( 2n+1
4−m

j

)(
j

n − j + 1

)

× (
(mu)2j−n−1w

2n+1
4−m

−jwx + (4 − m)((mu)2j−n−1w
2n+1
4−m

−j )xw
)
. (4.12)

By (4.1), the solutions for higher flows of the reduction can be given by the hodograph
equations

t0
1 (u,w) = t1 +

∞∑
j=0

µ
(1)
2j+1(u,w)t2j+5 +

∞∑
j=0

µ̂
(1)
2j+1(u,w)t̂2j+1,

t0
3 (u,w) = t3 +

∞∑
j=0

µ
(3)
2j+1(u,w)t2j+5 +

∞∑
j=0

µ̂
(3)
2j+1(u,w)t̂2j+1,

(4.13)

where µ
(i)
2j+1(u,w) and µ̂

(i)
2j+1(u,w) are the functions of u and w, defined by (4.2) and (4.3)

µ
(1)
2j+1 = (5 + 2j)

[
2+j∑
n=1

( 5+2j−m

m

n

)(
n

j − n + 2

)
(mu)2n−j−2w2+j−n

+
m − 3

m

1+j∑
n=1

( 5+2j−m

m

n

)(
n

j − n + 1

)
(mu)2n−jw1+j−n

]
,

µ
(3)
2j+1 = 5 + 2j

3

1+j∑
n=1

( 5+2j−m

m

n

)(
n

j − n + 1

)
(mu)2n−j−1w1+j−n,

(4.14)

µ̂
(1)
2j+1 = m(2j + 1)

m − 4

[
j−1∑
n=0

( 3−2j−m

m−4

n

)(
n

j − n − 1

)
(mu)2n−j+1w

3−2j−m

m−4 −n

+
m − 3

m

j∑
n=0

( 3−2j−m

m−4

n

)(
n

j − n

)
(mu)2n−j+1w

3−2j−m

m−4 −n

]
,

µ̂
(3)
2j+1 = m(2j + 1)

3(m − 4)

j∑
n=0

( 3−2j−m

m−4

n

)(
n

j − n

)
(mu)2n−jw

3−2j−m

m−4 −n.
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Example 2. N = 2,m = 1.
In this case, the Lax operator (4.11) is defined by

L = L = L̂−3 = k + uk−1 + wk−3,

which satisfies the Lax equation

∂t2n+1L = {(L2n+1)�0,L}, ∂t̂2n+1
L = {(L̂−2n−1)�−1,L}, n = 0, 1, 2, . . . .

The hierarchy flows of u,w can be read by substituting m = 1 into (4.12). From
equations (4.14), the coefficients µ

(i)
2j+1(u,w) and µ̂

(i)
2j+1(u,w) (i = 1, 3) are given by

µ
(1)
1 = −10u2 + 20w, µ

(1)
3 = −70u3 + 126uw, µ

(1)

5 = −378u4 + 504u2w + 252w2,

µ
(3)
1 = 20u/3, µ

(3)
3 = 35u2 + 14w, µ

(3)

5 = 168u3 + 168uw,

µ̂
(1)
1 = 2

3uw−2/3, µ̂
(1)
3 = −1, µ̂

(1)

5 = − 10
27u3w−4/3 + 10

9 uw−1/3,

µ̂
(3)
1 = − 1

9w−2/3, µ̂
(3)
3 = 0, µ̂

(3)

5 = 5
81u2w−4/3 − 10

27w−1/3.

To find (2 + 1)-dimensional solutions in u(x, y, t), we set t̂2n+1 = 0 and expand the hodograph
equations (4.13) up to t5:

t0
1 (u,w) = x + µ

(1)
1 t = x + (−10u2 + 20w)t,

t0
3 (u,w) = y + µ

(3)
1 t = y + 20

3 ut,

where t0
1 and t0

3 can be given by µ
(1)
3 and µ

(3)
3 , respectively, as

t0
1 (u,w) = 10u3 − 18uw, t0

3 (u,w) = −5u2 − 2w.

After eliminating w, we obtain a hodograph equation for u

165u3 + 360tu2 + 200t2u + 27yu + 30ty − 3x = 0.

The above equation has a real solution

u(x, y, t) = f

330
+

2(680t2 − 297y)

33f
− 8t

11
with

f = (2016 000t3 − 1128 600ty + 326 700x

+ 220
√

a1t6 + a2t4y + a3t3x + a4t2y2 + a5tyx + a6y3 + a7x2)1/3,

a1 = 32 000 000, a2 = −25 920 000, a3 = 27 216 000, a4 = −3426 300,

a5 = −1523 6100, a6 = 4330 260, a7 = 2205 225.

One can verify that u(x, y, t) satisfies the t2n+1-flow (4.12) as well as the dBKP equation (1.7).
Similarly, the (2 + 1)-dimensional solutions involving (x, y, t̂1) that satisfy (4.12) can be given
by expanding the hodograph equation (4.13) up to t3 = y and t̂1:

t0
1 (u,w) = x + µ̂

(1)
1 t̂1 = x + 2

3uw−2/3 t̂1, t0
3 (u,w) = y + µ̂

(3)
1 t̂1 = y − 1

9w−2/3 t̂1.

Choosing t0
1 = 9

5 µ̂
(1)

5 , t0
3 = 9

5 µ̂
(3)

5 , after eliminating w, we get an implicit equation,

1296y4u4 + 864xy3u3 + 72y(3x2y + 2yt̂1 + 2)u2 + 24x(x2y + 2yt̂1 + 2)u + x2(x2 + 4t̂1) = 0,

which can be solved as

u(x, y, t̂1) = − x

6y
± 1

6y3

√
2y3(−yt̂1 − 1 ±

√
x2y + (yt̂1 + 1)2).

So far, we have obtained some hodograph solutions of the (2 + 1)-dimensional dBKP equation
(and its extension). To get more new solutions in this approach, the main difficulty we have
to confront with is to solve higher order algebraic equations. In the next section, we shall
show that Bäcklund transformations provide a convenient way to construct new solutions by
treating the known solutions as seed solutions.
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5. Bäcklund transformations

Let us discuss the one-parameter flow generated by addition symmetries. Setting s = −ε,
then the additional flow (3.3) can be written as

∂L
∂s

= {L, (F (L,M) − F̂ (L̂,M̂))�−1}, (5.1)

where the generators F and F̂ can be expressed as

F(L,M) =
∑
ij

cijL2i+1Mj , F̂ (L̂,M̂) =
∑
ij

ĉij L̂2i+1M̂j

with cij and ĉij being the arbitrary constants. Motivated by the dKP case [19], let us consider
an (r, s)-restricted system by putting t2n+1 = 0,∀n � r + 1, and t̂2n+1 = 0,∀n � s. The
Orlov–Schulman operators then become

M = (2r + 1)t2r+1L2r + (2r − 1)t2r−1L2r−2 + · · · + x + O(L−2),

M̂ = −(2s − 1)t̂2s−1L̂−2s − (2s − 3)t̂2s−3L̂−2s+2 + · · · − t̂1L̂−2 + v̂2 + O(L̂2).

Substituting M and M̂ into F and F̂ , respectively, and demanding that additional flows (5.1)
generated by F and F̂ do not induce hierarchy flows for t2n+1(n � r + 1) and t̂2n+1(n � s),
then we have

F(L,M) =
r∑

i=0

Fi(L,M), F̂ (L̂,M̂) =
−1∑

i=−s

F̂ i(L̂,M̂)

where the r + s + 1 symmetry generators are defined by

Fi(L,M) = αi

(
M

(2r + 1)L2r

)
L2i+1, i = 0, 1, 2, . . . , r(r � 1),

F̂ i(L̂,M̂) = βi

(
− M̂L̂2s

(2s − 1)

)
L̂2i+1, i = −s,−s + 1, . . . ,−1.

and αi, βi are the arbitrary functions.
Let us discuss the simplest nontrivial example, the (2, 1)-restricted system, which depends

on four time variables t̂1, x, y and t. The four symmetry generators in the system are given by

F̂−1 = β−1(−M̂L̂2)L̂−1, F0 = α0

(
M
5L4

)
L,

F1 = α1

(
M
5L4

)
L3, F2 = α2

(
M
5L4

)
L5

where

β−1(−M̂L̂2) = β−1(t̂1) + O(L̂2)

αi

(
M
5L4

)
= αi(t5) +

3

5
α′

i (t5)t3L−2 +

(
1

5
α′

i (t5)x +
9

50
α′′

i (t5)t
2
3

)
L−4

+

(
1

5
α′

i (t5)v2 +
3

25
α′′

i (t5)xt3 +
9

250
α′′′

i t3
3

)
L−6 + O(L̂−8), i = 0, 1, 2.
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The additional flows for the primary variable u ≡ u2 are

F̂−1 :
∂u

∂s
= β−1(t̂1)

∂u

∂t̂1
,

F0 :
∂u

∂s
= α0(t5)

∂u

∂x
,

F1 :
∂u

∂s
= α1(t5)

∂u

∂t3
+

3

5
α′

1(t5)t3
∂u

∂x
+

1

5
α′

1(t5),

F2 :
∂u

∂s
= α2(t5)

∂u

∂t5
+

3

5
α′

2(t5)t3
∂u

∂t3
+

(
1

5
α′

2(t5)x +
9

50
α′′

2 (t5)t
2
3

)
∂u

∂x

+
2

5
uα′

2(t5) +
3

25
α′′

2 (t5)t3,

where we have used the fact v2x = u in the last equation. These additional flows can be solved
as follows:

F̂−1 : u(s; x, y, t, t̂1) = u(x, y, t, ˜̂t1),

F0 : u(s; x, y, t, t̂1) = u(x + sα0(t), y, t, t̂1),

F1 : u(s; x, y, t, t̂1) = u
(
x + 3

10 s2α1(t)α
′
1(t) + 3

5 syα′
1(t), y + sα1(t), t, t̂1

)
+ 1

5 sα′
1(t),

F2 : u(s; x, y, t, t̂1) = (t̃ ′)2/5u
(
(t̃ ′)1/5

(
x + 9

50 (t̃ ′)−1 t̃ ′′y2
)
, (t̃ ′)3/5y, t̃ , t̂1

)
+ 3

25 (t̃ ′)−1 t̃ ′′y,

where ˜̂t1(s, t̂1) and t̃ (s, t) are defined implicitly by

∫ ˜̂t1(s,t̂1) dz

β−1(z)
= s +

∫ t̂1 dz

β−1(z)
,

∫ t̃ (s,t) dz

α2(z)
= s +

∫ t dz

α2(z)
, (5.2)

and t̃ ′ = ∂t̃/∂t . Since the formulae shown above connect two solutions of the dBKP equation,
they can be viewed as Bäcklund transformations of the system. In particular, a composition of
any two Bäcklund transformations is still a Bäcklund transformation. Due to the commutative
subalgebra of additional symmetries, a pair of F-type and F̂ -type Bäcklund transformations
satisfies the following commutative diagram of transformations:

u(s; x, y, t, t̂1)

F ↗ ↘ F̂

u(x, y, t, t̂1) u(s, ŝ; x, y, t, t̂1) = u(ŝ, s; x, y, t, t̂1)

F̂ ↘ ↗ F

u(ŝ; x, y, t, t̂1)

which reveals the permutability of Bäcklund transformations.

Example 3. Consider the Bäcklund transformation generated by F2. Set t̂1 = 0, we have

u(s; x, y, t) = (t̃ ′(s, t))2/5u((t̃ ′(s, t))1/5(x + 9
50 (t̃ ′(s, t))−1 t̃ ′′(s, t)y2), (t̃ ′(s, t))3/5y, t̃(s, t))

+ 3
25 (t̃ ′(s, t))−1 t̃ ′′(s, t)y. (5.3)

Given a hodograph solution of the (2 + 1)-dimensional dBKP equation

u(x, y, t) = 1

60t
(−6y + 1 +

√
(6y − 1)2 − 120xt)
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which, after the Bäcklund transformation (5.3), becomes

u(s; x, y, t) = (f ′(s, t))2/5

60f (s, t)
(−6(f ′(s, t))3/5y + 1

+

√
(6(f ′(s, t))3/5y − 1)2 − 120(f ′(s, t))1/5

(
x +

9

50
(f ′(s, t))−1f ′′(s, t)y2

)
f (s, t))

+
3

25
(f ′(s, t))−1f ′′(s, t)y,

where f (s, t) ≡ t̃ (s, t) defined by (5.2) is an arbitrary well-behaved function with respect to
t. Therefore, we obtain a one-parameter family of solutions of the (2 + 1)-dimensional dBKP
equation (1.5). Other transformations can be performed in a similar manner so we omit them
here.

6. Miura transformation

Let us perform a Miura transformation to the dBKP hierarchy (the t2n+1-flow part of (2.1) and
(2.4) only):

L′ = e−adφ(L), M′ = e−adφ(M),

where φ = φ(t) satisfies the evolution equations

∂2n+1φ = L2n+1
+

∣∣
k=φx

.

Then, the corresponding modified hierarchy is given by

∂L′

∂t2n+1
= {B′

2n+1,L′}, ∂M′

∂t2n+1
= {B′

2n+1,M′},
with the canonical Poisson relation

{L′,M′} = 1,

where B′
2n+1 = (L′2n+1)�1. The new Lax and Orlov–Schulman operators have the form

L′ = k +
∞∑

n=1

u′
nk

−n+1, M′ =
∞∑

n=0

(2n + 1)t2n+1L′2n +
∑
n=0

v2n+2L′−2n−2,

where the coefficients u′
j in L′ are related to those of uj in L as

u′
1 = φx, u′

j = uj +
j−2∑
n=1

(−φx)
nuj−n

(
j − 2

n

)
, j � 2

with the proviso u2j+1 = 0. In fact, the Lax flows for L′ describe a modified partner of
the dBKP hierarchy, we may call it the dispersionless modified BKP (dmBKP) hierarchy.
Consider the zero curvature equations:

∂B′
2n+1

∂t2m+1
− ∂B′

2m+1

∂t2n+1
+ {B′

2n+1,B′
2m+1} = 0.

For n = 1 and m = 2, we have

∂B′
3

∂t5
− ∂B′

5

∂t3
+ {B′

3,B′
5} = 0. (6.1)

From the coefficient of k4 in (6.1) we get

u′
3 = 1

3∂−1
x u′

1y − 2u′
1u

′
2 − 1

3u′3
1 ,



7654 Y-T Chen and M-H Tu

while for that of k3, after eliminating u′
3, we have

u′
4 = 1

3∂−1
x u′

2y − u′2
2 + 2

3u′4
1 + 3u′2

1 u′
2 − 2

3u′
1∂

−1
x u′

1y.

Taking the coefficient of k2 in (6.1) and eliminating u′
3 and u′

4 from above, we obtain

3u′
1t +

(
2u′5

1 + 10u′3
1 u′

2 + 15u′
1u

′2
2 − 5u′

2∂
−1
x u′

1y

)
x

− 5
3∂−1

x u′
1yy − 10u′

1u
′
1x∂

−1
x u′

1y − 5u′
1x∂

−1
x u′

2y − 5u′
2x∂

−1
x u′

1y = 0. (6.2)

To eliminate u′
2, we consider the t3-flow of the gauge function φ:

∂φ

∂t3
= φ3

x + 3u2φx.

Since u′
1 = φx and u′

2 = u2, we obtain the relation between u′
1 and u′

2 as

3u′
1u

′
2 = −u′3

1 + ∂−1
x u′

1y. (6.3)

After substituting (6.3) into (6.2) to eliminate u′
2 we get the (2 + 1)-dimensional dmBKP

equation (v = u′
1):

9vt + 5v4vx + 5v2vy − 5∂−1
x vyy − 10vvx∂

−1
x vy − 5v−1vy∂

−1
x vy

+ 5v−2vx

(
∂−1
x vy

)2
+ 5vx∂

−1
x

(
v2 − v−1∂−1

x vy

)
y

= 0.

7. Conclusion

To sum up, we have studied the dBKP hierarchy from its extension, the so-called EdBKP
hierarchy which is an integrable hierarchy underlying the Landau–Ginzburg models of D-type
proposed by Takasaki. After introducing a dressing formulation to the EdBKP hierarchy, we
discuss additional symmetries of its solution space via Riemann–Hilbert problem. Particularly,
we discussed finite-dimensional reductions and hodograph solutions of the EdBKP hierarchy
and constructed new solutions using Bäcklund transformations generated by additional
symmetries. Furthermore, the gauge equivalence to the dBKP hierarchy, the so-called dmBKP
hierarchy, is also discussed. Just like the relationship between the dKP and dmKP hierarchies
[7], the integrability of the dmBKP can be investigated from that of the dBKP via the Miura
transformation between them. Finally, we would like to remark that the Lax as well as
Hamiltonian formulations to dispersionless integrable systems can be defined with respect to
the Poisson bracket of the form {A,B}(r) = pr∂A/∂k∂B/∂x−pr∂A/∂x∂B/∂k [4, 5, 17, 18].
It would be interesting to discuss the integrability of the dBKP hierarchy in this more general
setting.
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[17] Mañas M 2004 On the r-th dispersionless Toda hierarchy: Factorization problem, additional symmetries and
some solutions J. Phys. A: Math. Gen. 37 9195–224
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